

P.A~ 17~~

Newton Leibniz $\rightleftharpoons \frac{dy}{dx} / \int$

(1) Tangent line problem

HR I

Sm
h->0
differential calculus

bi bun seki bungakku 作物分緒力学 2 Area Moblen.

integral cabulus

Fondamental Theorem of Calculis.

Limits

THE TANGENT LINE PROBLEM Given a function f and a point $P(x_0, y_0)$ on the graph of f, find an equation of the line that is tangent to the graph of f at P. (Figure 1.1)

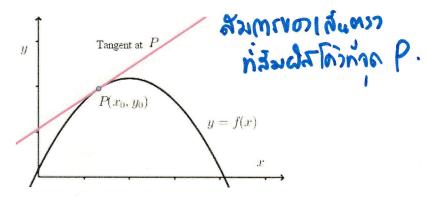
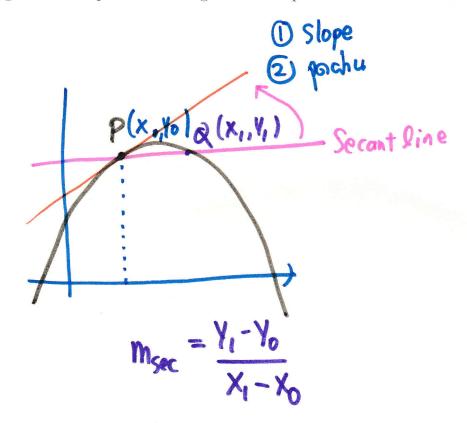
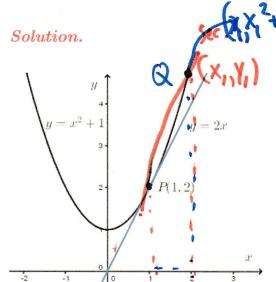


Figure 1.1: A picture of tangent line at point P



Example 1 Find an equation for the tangent line to the parabola $y = x^2 + 1$ at the point P(1,2).



$$m_{\text{sec}} = \frac{Y_1 - 2}{X_1 - 1}$$

$$= \frac{(X_1^2 + 1) - 2}{X_1 - 1}$$

พรางามเลือน (ในกับกับ P.

$$m_{sec} = \frac{x_1 - 1}{(x_1 - 1)}$$
 $m_{sec} = \frac{(x_1 - 1)(x_1 + 1)}{(x_1 - 1)}$

envor Msec thing 2

$$m_{tan} = 2$$

สาเพรามิเพา nohu P(1,2) และอได้ วามชั้น =2

$$(x_i,y_i),m$$

 $y-y_i=m(x-x_i)$

$$y-2=2(x-1)$$

$$y=2x$$

LIMITS If the value of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but not equal to a), then we write

$$\lim_{x \to a} f(x) = L$$

which is read "the limit of f(x) as x approaches a is L", or "f(x) approaches L as x approaches a".

Example 2 Use numerical evidence to make a conjecture about the value of $\lim_{x\to 2} \frac{x^2-4}{x-2}$. Solution.

	Α	В	
1	1.9	3.89999999999998	
2	1.99	3.989999999999979	
3	1.999	3.99899999999986	
4	1.9999	3.999900000000608	
5	1.99999	3.999989999999173	
6	1.999999	3.999998999911099	
7	1.9999999	3.999999897859482	.
8			
9	2.0000001	4.00000009769963	
10	2.000001	4.0000010000889	
11	2.00001	4.00001000000083	No. 10 (1997)
12	2.0001	4.000099999999392	No.
13	2.001	4.00100000000014	
14	2.01	4.0099999999998	
15	2.1	4.1	166 30 15 151 15+ 150 150 1 200 234 239 239 2: 110 24+ 1.6

ONE-SIDED LIMITS If the value of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but greater than a), then we write

$$\lim_{x \to a^+} f(x) = L$$

("the limit of f(x) as x approaches a from the right is L" or "f(x) approaches L as x approaches a from the right".)

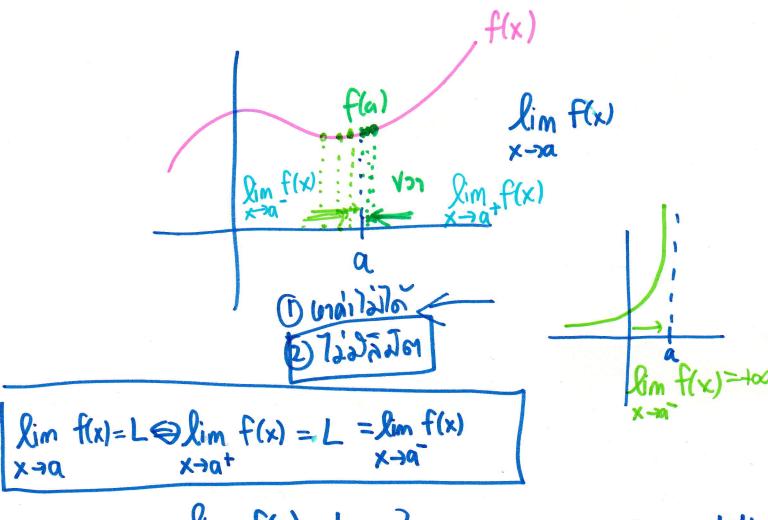
and if the value of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but less than a), then we write

$$\lim_{x \to a^{-}} f(x) = L$$

("the limit of f(x) as x approaches a from the left is L" or "f(x) approaches L as x approaches a from the left".)

THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-sided limit of a function f(x) exists at x = a if and only if both of the one-sided limits exist at a and have the same value; that is,

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x).$$



$$\lim_{x\to a^+} f(x) = L_1$$
 $\lim_{x\to a^+} f(x) = L_2$ $\lim_{x\to a^+} f(x) = L_2$

Example 3 Explain why $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

 $f(x) = \frac{|x|}{x} = \begin{cases} 1 \\ \end{cases}$

not exist. $|x| = \begin{cases} x ; x > 0 \\ -x ; x < 0 \end{cases}$

;x< 0 &

 $\lim_{x\to 0} \frac{|x|}{x} = \lim_{x\to 0} f(x)$

(1) $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 1 = 1$

2 lim f(x)=lim-1=1

 $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^+} f(x)$

midely X mil.

xy0, |x| = X

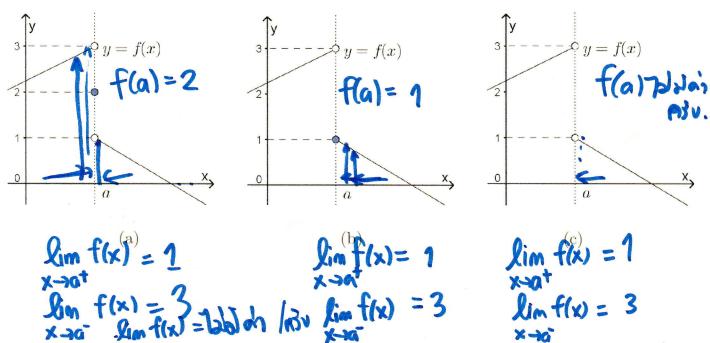
 $\therefore \frac{|x|}{x} = 1$

X<0; |x| = -X

 $\frac{1}{|x|} = \frac{|x|}{|x|}$

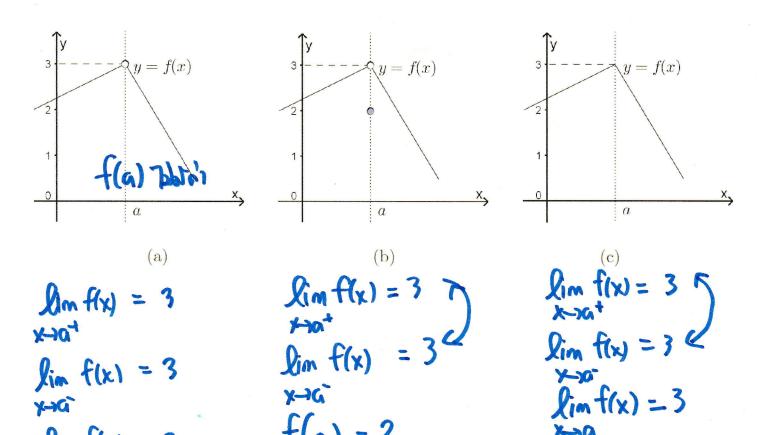
Example 4 For the functions in Figure 1.3, find the one-sided and two-sided limits at x = a if they exist.

Solution.



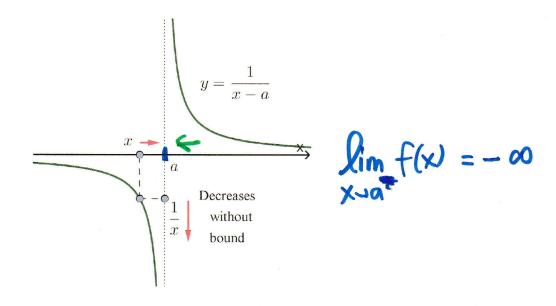
Example 5 For the functions in Figure 1.4, find the one-sided and two-sided limits at x = a if they exist.

Solution.

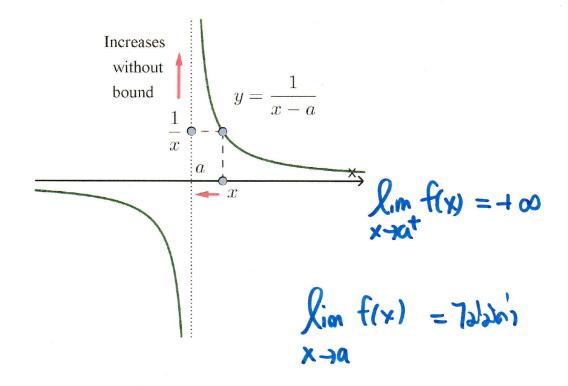


Infinite Limits

x	a-1	a - 0.1	a - 0.01	a - 0.001	a - 0.0001	 a
$\frac{1}{x-a}$	-1	-10	-100	-1000	-10,000	



x	a	 a + 0.0001	a + 0.001	a + 0.01	a + 0.1	a+1
$\frac{1}{x-a}$		 10,000	1000	100	10	1



Infinite Limits The expressions

$$\lim_{x\to a^-} f(x) = +\infty \text{ and } \lim_{x\to a^+} f(x) = +\infty$$

denote that f(x) increases without bound as x approaches a from the left and from the right, respectively. If both are true, then we write

$$\lim_{x \to a} f(x) = +\infty.$$

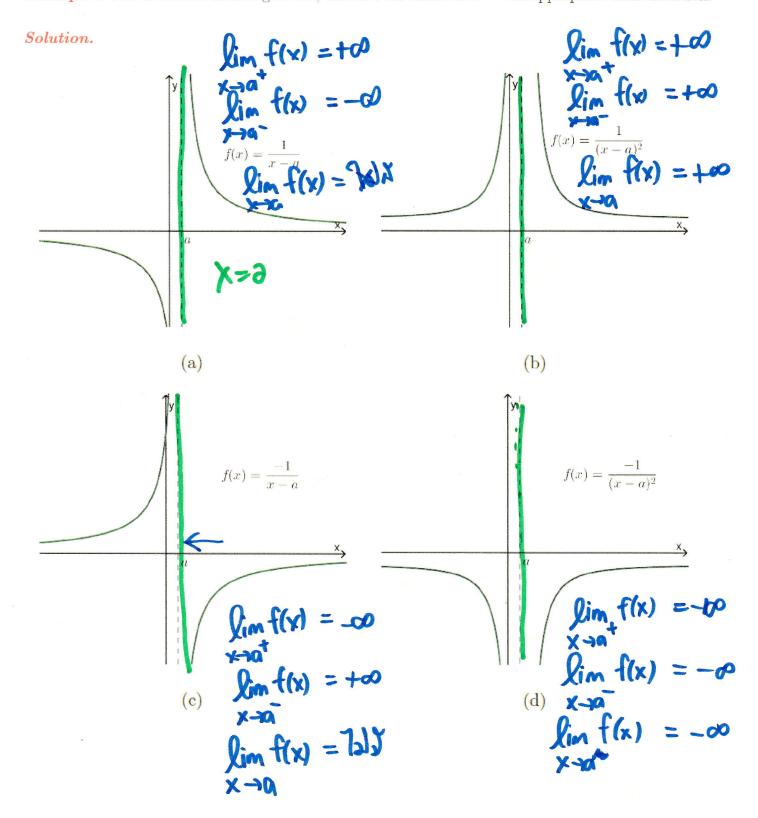
Similarly, the expressions

$$\lim_{x\to a^-}f(x)=-\infty$$
 and $\lim_{x\to a^+}f(x)=-\infty$

denote that f(x) decreases without bound as x approaches a from the left and from the right, respectively. If both are true, then we write

$$\lim_{x \to a} f(x) = -\infty.$$

Example 6 For the functions in Figure 1.7, describe the limits at x = a in appropriate limit notation.



1.1.3 Vertical Asymptotes

เล้นกำกิบแนวจ์เ

If the graph of f(x) either rises or falls without bound, squeezing closer and closer to the vertical line x = a as x approaches a from the side indicated in the limit, we call the line x = a vertical asymptote of the curve y = f(x).

Figure 1.8 illustrates geometrically what happen when any of the following situations occur:

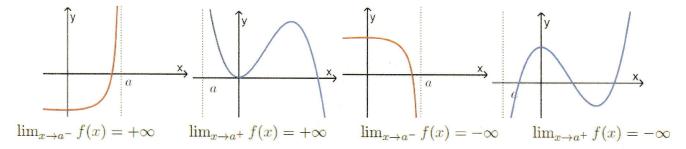


Figure 1.8: Examples of vertical asymptotes

Sampling Pitfalls

$$\lim_{x \to 0} \sin\left(\frac{\pi}{x}\right) = ?$$

X	$\frac{\pi}{X}$	$f(x) = \sin\left(\frac{\pi}{x}\right)$
$x = \pm 1$	$\pm \pi$	$\sin(\pm \pi) = 0$
$x = \pm 0.1$	$\pm 10\pi$	$\sin(\pm 10\pi) = 0$
$x = \pm 0.01$	$\pm 100\pi$	$\sin(\pm 100\pi) = 0$
$x = \pm 0.001$	$\pm 1000\pi$	$\sin(\pm 1000\pi) = 0$
$x = \pm 0.0001$	$\pm 10,000\pi$	$\sin(\pm 10,000\pi) = 0$
	*	

