DEFINITION A function f is said to be **continuous** at x = c provided the following conditions are satisfied:

- 1. f(c) is defined.
- 2. $\lim_{x \to c} f(x)$ exists.
- $3. \quad \lim_{x \to c} f(x) = f(c).$

1.3.1 Continuity on an Interval

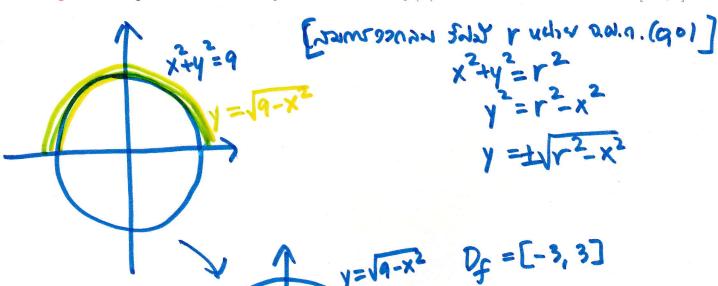
We say a function f is continuous from the left at c if

and is continuous from the right at c if

$$\lim_{x \to c^+} f(x) = f(c).$$

DEFINITION A function f is said to be continuous on a closed interval [a,b] if the

following conditions are satisfied:


- 1. f is continuous on (a, b).
- 2. f is continuous from the right at a.
- 3. f is continuous from the left at b.

$$\lim_{x\to a^{+}} f(x) = f(b)$$

$$\lim_{a\to a^{+}} f(x) = f(b)$$

f is continuous on [a,b) — [a,b] a [a,b]

Example 15 Explain the continuity of the function $f(x) = \sqrt{9-x^2}$ on the interval [-3,3].

CHECK (1) f is continuous on (-3, 3) (2) f is continuous from the right at x = -3(3) f is continuous from the left at x = 3

(1) assign CE(-3,3) [CHECK of forburon c Pum]

(2) lim f(x) = 19-c2

(3) lim f(x) -f(c) yo ce(-33)

: f inducation (-3,3)

(2) CHECK $\lim_{x\to -3} f(x) = f(-3)$

(1)-{(-3) = 0

(2) $\lim_{x\to -3^+} f(x) = 0$

(3) $\lim_{x\to -3^+} f(x) = f(-3)$

· fordinamound x=-3

(3) CHECK $\lim_{x \to +3} f(x) = f(3)$ (1) f(3) = 0(2) $\lim_{x \to 3} f(x) = 0$ (3) $\lim_{x \to 3} f(x) = f(3)$

: foraciom, then k = 3

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
[Ance R]

- (1) b(c) myy
- 2) lim p(x) Wah
- (3) $\lim_{x\to c} p(x) = p(c)$
- () p(c) = anc"+an-1c"+... +a, c+a0
- 2) $\lim_{k \to c} p(x) = a_n c^{n+} a_{-1} c^{n+} + \dots + a_n c + a_0$
- 3) lim p(x) = p(c)

i johong chulognandinon (

Rational function

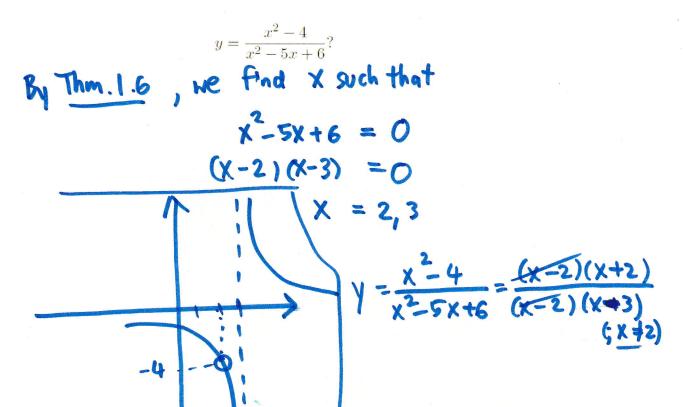
(Rational Number)

Some Properties of Continuous Functions

Theorem 1.5 If the functions f and g are continuous at c, then

- (a) f + g is continuous at c.
- (b) f g is continuous at c.
- (c) fg is continuous at c.
- (d) f/g is continuous at c if $g(c) \neq 0$ and has a discontinuity at c if g(c) = 0.

Continuity of Polynomials and Rational Functions


THEOREM 1.6

(a) A polynomial is continuous everywhere.

visulo: numerator

(b) A rational function is continuous at every point where the denominator is nonzero, and has discontinuities at the points where the denominator is zero.

Example 16 For what values of x is there a discontinuity in the graph of

Example 17 Show that |x| is continuous everywhere.

$$f(x) = |x| \longrightarrow f(x) = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

From Thm 1.6, we have obtain that f(x) is continuous on (0,00)

Similarly, if x <0, f(x) = -x We remark that f(x) = -x is continuous on $(-\infty,0)$

:. We consider at x = 0.

CHECK continuity at x=0

(1)f(0)

(2) lim f(x) x-0 (3) lim f(x)=f(0)

(2) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x = 0$

lim f(x) = lim -x = 0 x-10 x-10

· lim f(x) = lim f(x), we have lim f(x) =0
x+0 x+0

(3) lim f(x) = f(0)

 $x \to 0$: f is continuous at x = 0

: f(x)=|x| is continuous everywhere.

1.3.2 Continuity of Compositions

THEOREM 1.7 If $\lim_{x\to c}g(x)=L$ and if the function f is continuous at L, then $\lim_{x\to c}f(g(x))=f(L)$. That is, $\lim_{x\to c}f(g(x))=f(\lim_{x\to c}g(x)).$

Example 18 Given that $\lim_{x\to 2} x^2 - 9 = -5$ find, $\lim_{x\to 2} |x^2 - 9|$.

$$f(x) = |x^{2}-9|$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) > 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

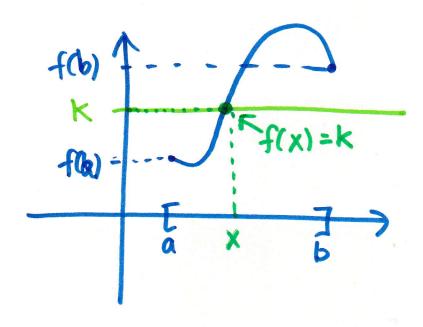
$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

$$f(x) = \begin{cases} x^{2}-9 & (x^{2}-9) > 0 \\ -(x^{2}-9) & (x^{2}-9) < 0 \end{cases}$$

and $f(x) = |x^2 - q|$ no stantish $h(y) = |y| \in h(y)$ or folder $y(y) = x^2 - q$ f(x) = h(y(x))and h(x) = |x| replacementally allowards $|x^2 - q| = |x| = |-5| = 5$.

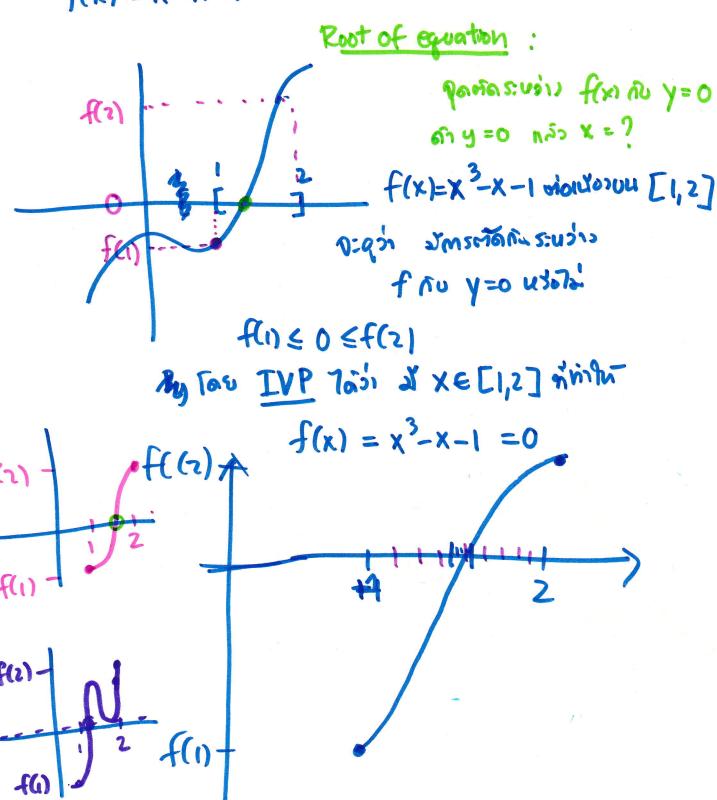
Sim $|x^2 - q| = |x| = |x| = |-5| = 5$.

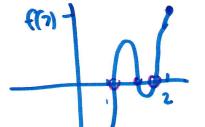
THEOREM 1.8


- (a) If the function g is continuous at c, and the function f is continuous at g(c), then the composition $f \circ g$ is continuous at c.
- (b) If the function g is continuous everywhere, and the function f is continuous everywhere, then the composition $f \circ g$ is continuous everywhere.

Theorem

Trigonometric functions, inverse trigonometric functions, exponential functions, logarithmic functions are continuous in on their domains.


1.4 The Intermediate-Value Theorem


THEOREM 1.9 (INTERMEDIATE-VALUE THEOREM) If f is continuous on a closed interval [a,b] and k is any number between f(a) and f(b), inclusive, then there is at least one number x in the interval [a,b] such that f(x)=k.

$$p(x) = x^{3} - x - 1$$

$$f(x) = x^3 - x - 1 = 0$$

Example 19 Verify that there exists at least one root of the equation $x^3 - x - 1 = 0$ in the closed interval [1, 2]. Then, approximate this root to two decimal-place accuracy.

$$f(x) = x^3 - x - 1$$

Since f(1) = -1 and f(2) = 5, we have $f(1) \le 0 \le f(2)$. Therefore the root is between 1 and 2.

\bar{x}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
f(x)	-1	-0.76	-0.47	-0,10	0.34	0,87	1.49	2.21	3.69	3.39	5

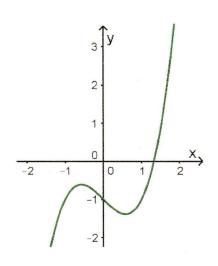
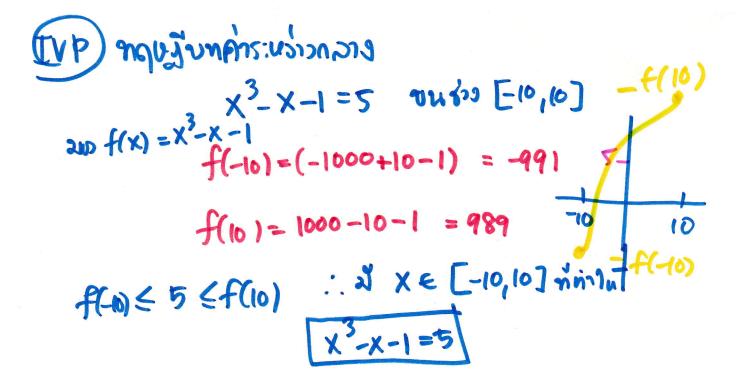


Figure 1.13: Graph of $y = x^3 - x - 1$


Since $f(\underline{1.3}) < 0$ and $f(\underline{1.4}) > 0$, the root is between $\underline{13}$ and $\underline{1.4}$.

x	1.30	1.31	1.32	1.33	124	1. 35
f(x)	-0.103	-0.061	-0.020	0.023	0.066	0.110
x	1.36	1.37	138	1.39	1.40	
f(x)	0.155	0.201	0.248	0.296	0.344	

Since $f(\underline{132}) < 0$ and $f(\underline{1.33}) > 0$, the root is between $\underline{132}$ and $\underline{1.33}$.

						9.0
	1.20		The second secon	The second secon		
	-0.020	_		The second second		
The state of the s	1326				-	1
f(x)	2200.0	0.0098	0.0140	0.0183	0.0226	

The root of the equation $x^3 - x - 1 = 0$, that is between 1 and 2, is approximately 1.32

