Class Activities 1

Activities for the class of January 9 (Tue), 2018.

Main idea of the lecture

- Let $f \subseteq \mathbb{R}^n \times \mathbb{R}^m$ be a relation. f is said to be a **function of** n **variables** if and only if for each pair $(P_1, W_1), (P_2, W_2)$ such that $P_1, P_2 \in \mathbb{R}^n$ and $W_1, W_2 \in \mathbb{R}^m$, if $P_1 = P_2$, then $W_1 = W_2$.
- If f is a function, f is said to be well-defined.
- The domain of f is a set $D_f = \{P \in \mathbb{R}^n | \exists W \in \mathbb{R}^m, (P, W) \in f\}.$
- The range of f is a set $R_f = \{W \in \mathbb{R}^m | \exists P \in \mathbb{R}^n, (P, W) \in f\}$

Group Activities

Mathematical Instructions

For each given f, (1) Verify that f is well-defined; (2) Find its domain and range, and draw the region of the domain; (3) Prove its domain and range.

1.
$$f_1 = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{R} \mid z = \ln(x^2 + y^2 - 1)\}$$

2.
$$f_2 = \left\{ (x, y, z) \in \mathbb{R}^2 \times \mathbb{R} \mid z = \sqrt{6 - (2x + 3y)} \right\}$$

3.
$$f_3 = \left\{ (x, y, z) \in \mathbb{R}^2 \times \mathbb{R} \mid z = \frac{1}{x^2 + y^2 - 1} \right\}$$

Activity Instructions

- 1. Each group selects **one** function from the given functions randomly. The members discuss each other about the given mathematical instruction.
- 2. Write a chart paper following the given mathematical instruction (proofs), and stick the chart paper in front of the classroom (MB2213-14) **before 12.45 of January 12 (Fri), 2018.**
- 3. At 13.00 13.10 on January 12 (Fri), 2018, we will have the **joint discussion** (the discussion with other groups).