Quiz

A quiz for the class of February 9 (Fri), 2018.

Let f(x) be a function defined by

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

In the last class, we already computed the partial derivative $D_x f(x, y)$ and $D_y f(x, y)$. The results are

$$D_x f(x,y) = \begin{cases} \frac{2xy^4}{(x^2 + y^2)^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

$$D_y f(x,y) = \begin{cases} \frac{2x^4y}{(x^2 + y^2)^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

$$D_y f(x,y) = \begin{cases} \frac{2x^4y}{(x^2 + y^2)^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

Prove that f is differentiable at (0,0).

He would like to check that Dxf(x,y) and Dyf(x,y) are continuous at (0,0) to use Thm. 1.8.

at
$$(0,0)$$
 to use Thm. 1.8.

To check $D_{x}f(x,y)$ is ont. at $(0,0)$,

(1) $D_{x}f(0,0) = 0$

(2) Claim! $\lim_{(x,y)\to |0|0} D_{x}f(x,y) = 0$.

(2) Claim! $\lim_{(x,y)\to |0|0} D_{x}f(x,y) = 0$.

(3) $\lim_{(x,y)\to |0|0} \int_{(x,y)\to |0|0} \int_{(x,y)\to$

: Dxf(xy) and Dyf(xy) are continuous at (0,0).

By Theorem 1.8, it implies that fis differentiable at (0,0) #