U=sin(arction 2x); du=[cos(erction 2x)d (arction 2x)]dx

 $dy = \cos \left(\arctan 2x \right) \cdot \frac{1}{1 + (2x)^2} \cdot 2 \right) dx$

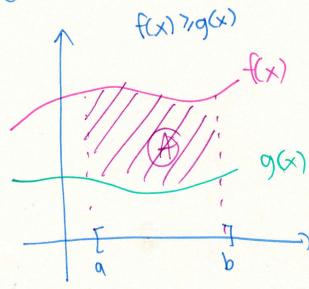
 $dx = \frac{(1+4x^2)}{2\cos(2rctan 2x)} du$

 $\frac{1}{1+4x^2} \frac{2 \sin(\arctan 2x)}{1+4x^2} \frac{\cos(\arctan 2x)}{\cos(\arctan 2x)} dx = \int_{-1}^{2} \frac{\cos(\arctan 2x)}{1+4x^2} \frac{(1+4x)^2}{2\cos(\arctan 2x)} dx$

 $= \frac{1}{2} \int_{2}^{2} u \, du$ $= \frac{1}{2} \frac{2}{\ln 2} + C$

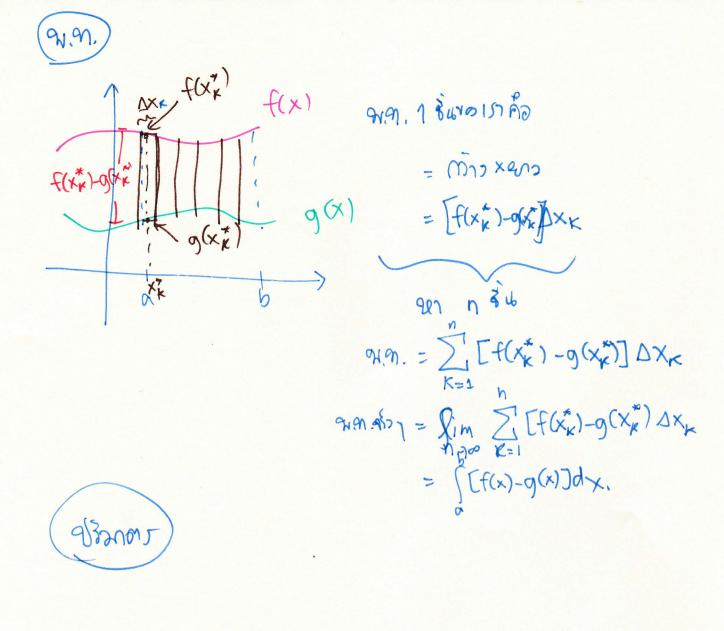
= 1 2 sin (orcton 2x) +C #

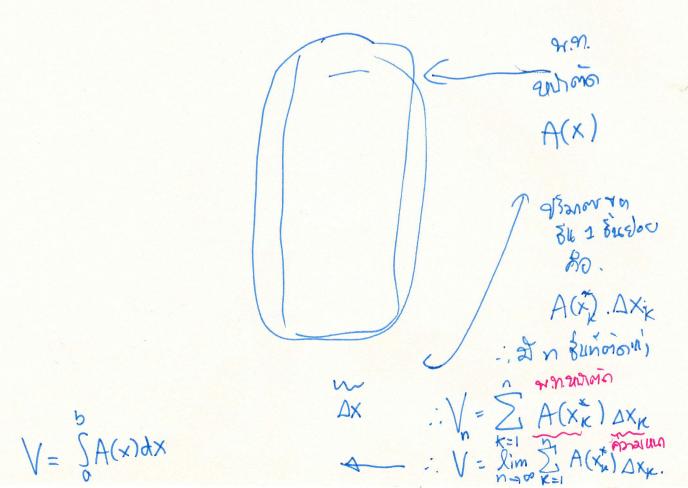
1 Area between curves.



$$A = \int_{\alpha}^{b} CF(x) - g(x) dx.$$

(2) ปริกาศรของ พราศัน

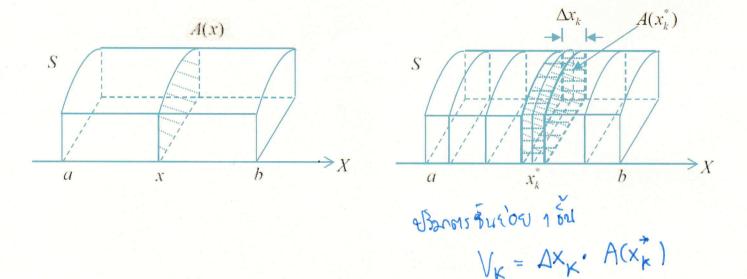




6.2 Volumes by slicing; Disks and Washers

Theorem 6.3 (Volume formula) Let S be a solid bounded by two parallel planes perpendicular to the x-axis at x = a and x = b. If, for each x in [a, b], the cross-sectional area of S perpendicular to the x-axis is A(x), then the volume of the solid is

$$V = \int_{a}^{b} A(x)dx. \tag{6.3}$$

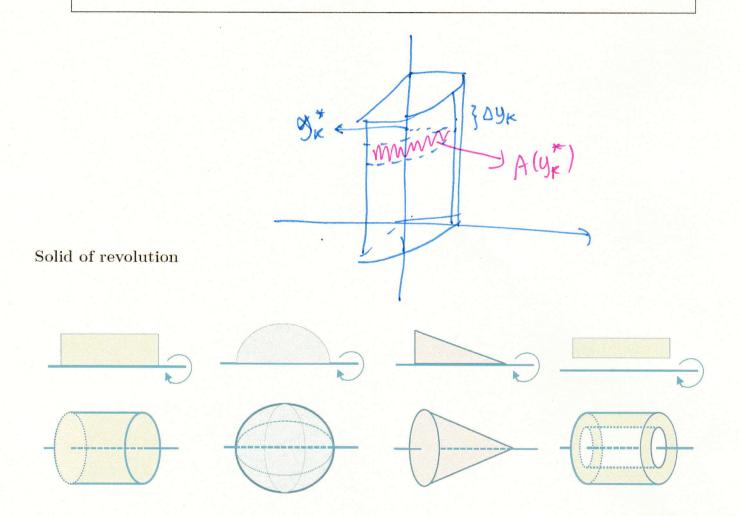


$$V = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^n A(x_k^*) \Delta x_k = \int_a^b A(x) dx$$

There is a similar result for cross sections perpendicular to the y-axis.

Theorem 6.4 (Volume formula) Let S be a solid bounded by two parallel planes perpendicular to the y-axis at y = c and y = d. If, for each y in [c, d], the cross-sectional area of S perpendicular to the y-axis is A(y), then the volume of the solid is

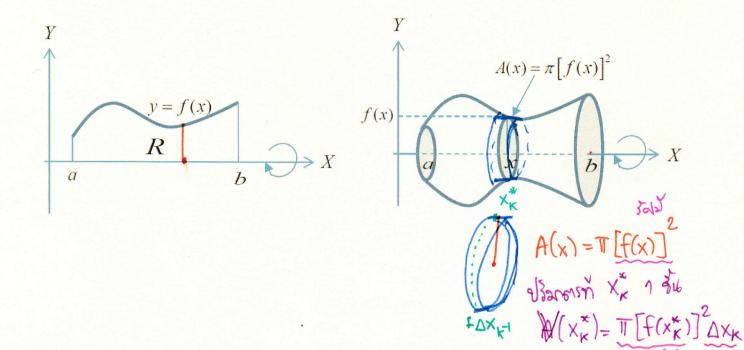
$$V = \int_{c}^{d} A(y)dy. \tag{6.4}$$



Volume by Disks perpendicular to the X-axis

Disk method Maryllrush

Problem: Let f be continuous and nonnegative on [a, b], and let R be the region that is bounded above by y = f(x), below by the x-axis, and on the sides by the lines x = a and x = b. Find the volume of the solid of revolution that is generated by revolving the region R about the X-axis.



We can solve this problem by slicing. For this purpose, observe that the cross section of the solid taken perpendicular to the X-axis at the point x is a circular disk of radius f(x). The area of this region is 11 3240124240 M

$$A(x) = \pi [f(x)]^2.$$

Thus, from (6.3) the volume of the solid is

Vis
$$V_{n} = \sum_{k=1}^{\infty} \mathbb{T} \left[f(x_{k}^{\infty}) \right]^{2} \mathbb{A} + \mathbb{E}$$

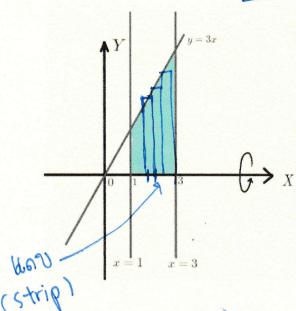
$$V = \int_{a}^{b} \pi [f(x)]^{2} dx.$$

$$V = \int_{a}^{b} \pi [f(x_{k}^{\infty})]^{2} dx.$$

$$V = \int_{a}^{b} \pi [f(x_{k}^{\infty})]^{2} dx.$$

Because the cross sections are disk shaped, the application of this formula is called the method of disks.

Example 6.6 Find the volume of the solid that is obtained when the region under the curve y = 3x over the interval [1, 3] is revolved about the X-axis.



$$V = \int \pi [3x]^{2} dx$$

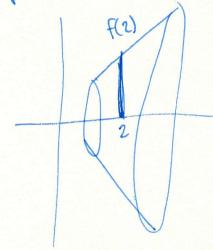
$$= \pi \int (3x^{2})^{3} dx$$

$$= \pi \left[\frac{3}{2}x^{3}\right]^{3}$$

$$= \pi \left[3 \cdot 3^{3} - 3 \cdot 1^{3}\right]$$

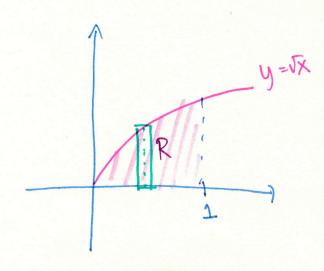
$$= \pi \left[81 - 3\right]$$

$$= \pi \left[79\right] = 78 \pi.$$



Transland Method
อาลักษณ์ และเอาการ กะสารทอง กะลารทางกาง
กะลารทาง การกางกาง
การสารทาง การกางกาง
การสารทาง

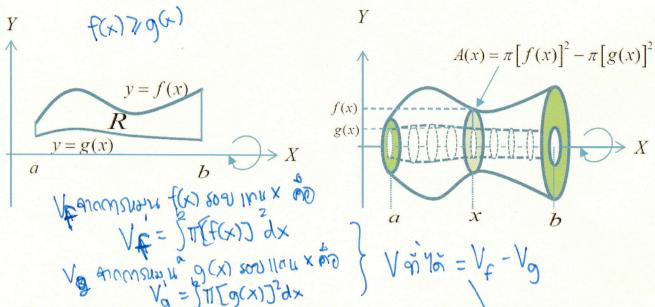
 $\frac{1}{2} \int_{\mathbb{R}} f(x) = \sqrt{x} \quad \text{ain } x = 0 \text{ ain } x = 1 \text{ ain } 0 \text{ ain } x = 1 \text{ ain } 0 \text{ ain } x = 0 \text{ ain } x = 1$ $\text{and } f(x) = \sqrt{x} \quad \text{ain } x = 0 \text{ ain } x = 0 \text{ ain } x = 1$



 $V = \int_{0}^{1} \pi \left(\sqrt{x} \right)^{2} dx$ $= \pi \int_{0}^{2} x dx$ $= \pi \left[\frac{1}{2} - \frac{0}{2} \right] = \pi \int_{0}^{1} \frac{1}{2} dx$

Volume by Washers perpendicular to the X-axis

Problem: Let f and g be continuous and nonnegative on [a,b], and suppose that $f(x) \ge g(x)$ for all x in the interval [a,b]. Let R be the region that is bounded above by y = f(x), below by y = g(x), and on the sides by the lines x = a and x = b. Find the volume of the solid of revolution that is generated by revolving the region R about the X-axis.



We can solve this problem by slicing. For this purpose, observe that the cross section of the solid taken perpendicular to the X-axis at the point x is the annular or "washer-shaped", region with inner radius g(x) and outer radius f(x). The area of this region is

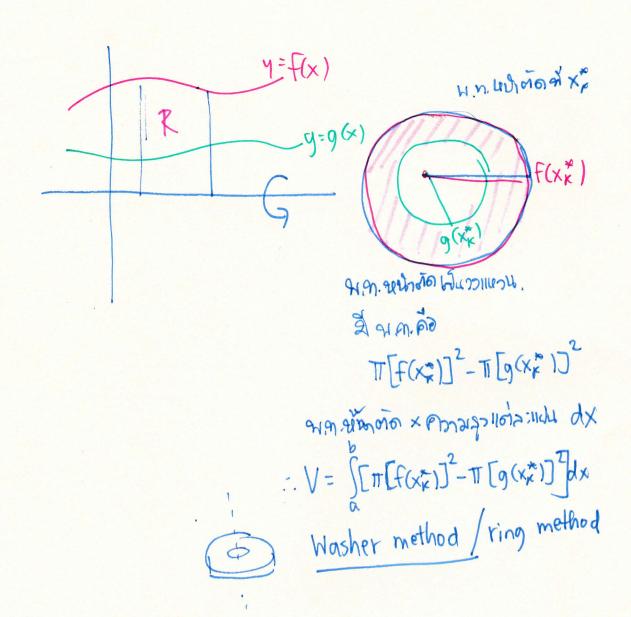
$$A(x) = \pi[f(x)]^2 - \pi[g(x)]^2 = \pi\left([f(x)]^2 - [g(x)]^2\right)$$

$$= \int \pi[f(x)]^2 - g(x)^2 dx$$
upper of the solid is

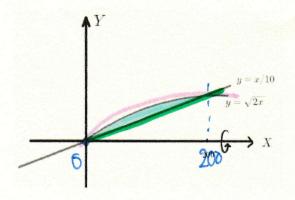
Thus, from (6.3) the volume of the solid is

$$V = \int_{a}^{b} \pi \left([f(x)]^{2} - [g(x)]^{2} \right) dx \tag{6.6}$$

Because the cross sections are washer shaped, the application of this formula is called the *method* of washers.



Example 6.7 Find the volume of the solid that is obtained when the region between the graphs of the equations $y = \sqrt{2x}$ and $y = \frac{x}{10}$ over the interval [0, 200] is revolved about the X-axis.



$$V = \int_{0}^{\pi} \left[\left(\frac{1}{2} \times \frac{2}{10} - \left(\frac{x}{10} \right)^{2} \right] dx$$

$$= \pi \int_{0}^{\pi} \left[2 \times -\frac{x^{2}}{100} \right] dx$$

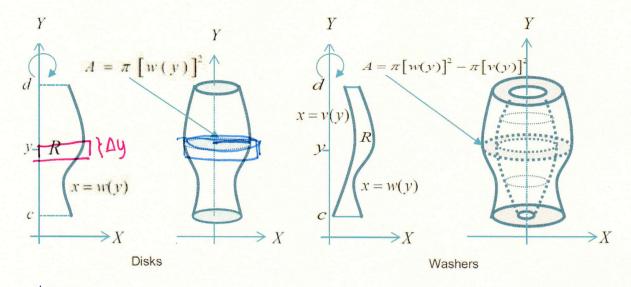
$$= \pi \left[x^{2} - \frac{x^{3}}{300} \right]_{0}^{200}$$

$$\vdots$$

$$= \pi \left[(200)^{2} - \frac{(200)^{3}}{300} \right] - \left[0^{2} - \frac{0^{3}}{300} \right]$$

$$= \pi \left[(200)^{2} - \frac{(200)^{3}}{300} \right] = 40,000 \frac{\pi}{3}. \quad #$$

Volume by Disks and Washers perpendicular to the Y-axis



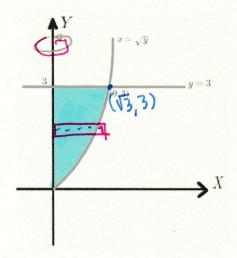
The methods of disks and washers have analogs for regions that are revolved about the Y-axis. Using the method of slicing and Formula (6.4), the following formulas for the volumes of the solid are

$$V = \int_{c}^{d} \pi[w(y)]^{2} dy \qquad (disks), \tag{6.7}$$

$$V = \int_{c}^{d} \pi \left([w(y)]^{2} - [v(y)]^{2} \right) dy \qquad (washers).$$
 (6.8)

 $V = \int_{c}^{d} \pi \left([w(y)]^{2} - [v(y)]^{2} \right) dy \qquad (washers). \tag{6.8}$ $90035:39 \quad \text{Gayusov law y donasty keyo } X = \text{W(y)}$ $900500 \quad \text{Monotonial matter matte$

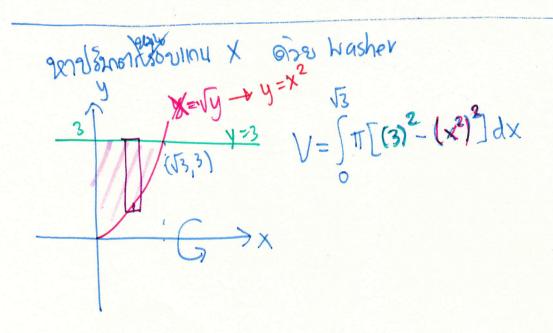
Example 6.8 Find the volume of the solid generated when the region enclosed by $x = \sqrt{y}$, y = 0, and y = 3 is revolved about the Y-axis.



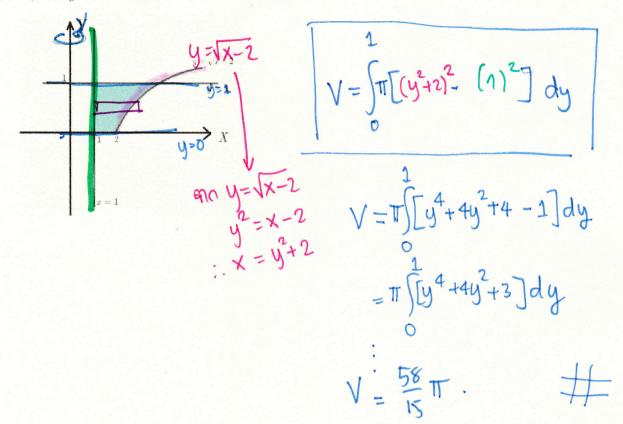
900 of
$$x = \sqrt{y}$$
 $\rightarrow \text{ on } y = 3 \text{ for } x = \sqrt{3}$

(500 of y)

 $V = \int_{0.3}^{3} T(\sqrt{y})^2 dy$
 $= T(\sqrt{2} |_{0.3}^{3})$
 $= T(\sqrt{2} - \sqrt{2}) = \sqrt{2}T$



Example 6.9 Find the volume of the solid generated when the region enclosed by x = 1, $y = \sqrt{x-2}$, y = 0, and y = 1 is revolved about the Y-axis.



Other axes of revolution

It is possible to use the method of disks and the method of washers to find the volume of a solid of revolution whose axis of revolution is a line other than one of the coordinate axes. Instead of developing a new formula for each situation, we will appeal to Formulas (6.3) and (6.4) and integrate an appropriate cross-sectional area to find the volume.

Example 6.10 Find the volume of the solid that is obtained when the region between the curve y = x + 1 and y = 0 over the interval [0, 2] is rotated about the line y = -1.

