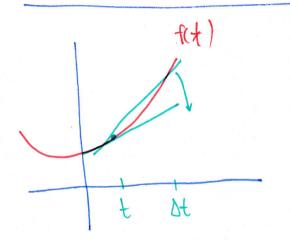
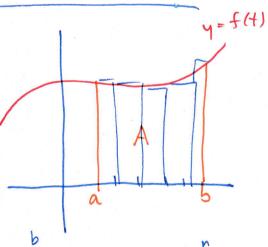
$$\frac{\Delta C}{\Delta T}$$

$$\frac{dy}{dx} = +5 \text{ m/s.}$$

$$\frac{dC}{dt} = -6 \text{ molar/s.}$$



Differential Calculus



Fundamental Theorem of Calcula

Limits and Continuity

THE TANGENT LINE PROBLEM Given a function f and a point $P(x_0, y_0)$ on the graph of f, find an equation of the line that is tangent to the graph of f at P. (Figure 1.1)

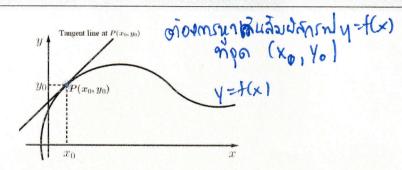


Figure 1.1: A picture of tangent line at point P

Example 1.1 Find an equation for the tangent line to the parabola $y = x^2 + 1$ at the point P(1,2).

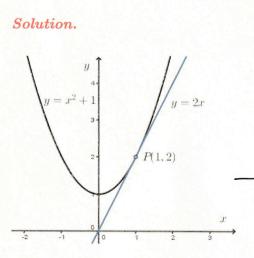


Figure 1.2: Graph of $y = x^2 + 1$

Slope =
$$\Delta Y = (x + 1) - 2 = x - 1$$

 $\Delta X = 1$

1.1 Limits

y = f(x) $\lim_{x \to a} f(x) = L$

7

LIMITS If the value of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but not equal to a), then we write

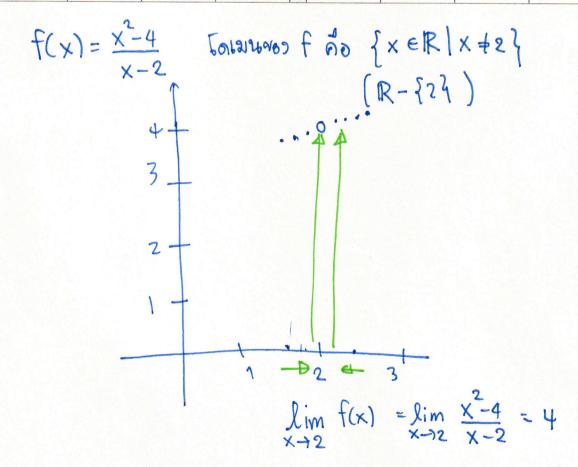
$$\lim_{x \to a} f(x) = L$$

which is read "the limit of f(x) as x approaches a is L", or "f(x) approaches L as x approaches a".

Example 1.2 Use numerical evidence to make a conjecture about the value of $\lim_{x\to 2} \frac{x^2-4}{x-2}$.

Solution.

x	1.9	1.99	1.999	1.9994	2.0001	2.001	2.01	2.1
f(x)	3.9	3.99	3.999	3,9999	4,0001	4.001	4.01	4.1



One-sided Limits 1.1.1

ONE-SIDED LIMITS If the value of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but greater than a), then we write

$$\lim_{x o a^+}f(x)=L$$
 ล็งโอกพาชาวา

("the limit of f(x) as x approaches a from the right is L" or "f(x) approaches L as x approaches a from the right".)

and if the value of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but less than a), then we write

$$\lim_{x \to a^{-}} f(x) = L$$

("the limit of f(x) as x approaches a from the left is L" or "f(x) approaches L as xapproaches a from the left".)

Example 1.3 Explain why $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Solution.

THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-sided limit of a function f(x) exists at x = a if and only if both of the one-sided limits exist at a and have the same value; that is,

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

ชากรีนที่ข้องเป็นชาวๆ (piecewise-defined function)

$$f(x) = \begin{cases} -5, & x \\ -5, & x \end{cases}$$

Ex
$$f(x) = \frac{|x|}{x}$$
 where $\lim_{x \to 0} f(x) \left(\lim_{x \to 0} \frac{|x|}{x} \right)$

oneurous
$$f(x) = |x|$$

$$f(1) = 1$$

$$f(-1) = 1$$

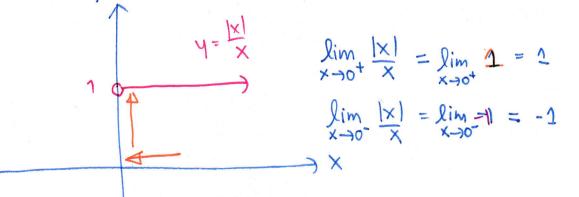
$$f(-1) = -(-1) = +1$$

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

$$f(x) = \begin{cases} x & ; x > 0 \\ -x & ; x < 0 \end{cases}$$

$$|x| = \begin{cases} x, x > 0 \\ -x, x < 0 \end{cases}$$

$$\frac{|x|}{x} = \begin{cases} \frac{x}{x} & ; x \neq 0 \\ -\frac{x}{x} & ; x \neq 0 \end{cases} \Rightarrow \frac{|x|}{x} = \begin{cases} \frac{1}{x} & ; x \neq 0 \\ -\frac{1}{x} & ; x \neq 0 \end{cases}$$



$$\lim_{x \to 0^+} \frac{|x|}{x} = 1 = \lim_{x \to 0^+} \frac{|x|}{x}$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1 = \lim_{x \to 0^+} \frac{|x|}{x}$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1 = \lim_{x \to 0^+} \frac{|x|}{x}$$

Example 1.4 For the functions in Figure 1.3, find the one-sided and two-sided limits at x = a if they exist.

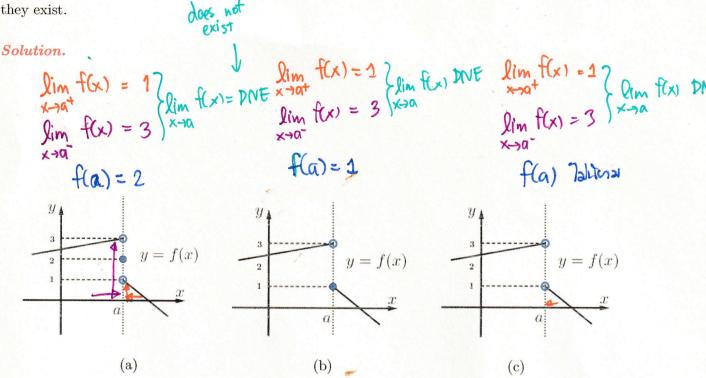


Figure 1.3: A picture for Exercise 1.4

Example 1.5 For the functions in Figure 1.4, find the one-sided and two-sided limits at x = a if they exist.

Solution.

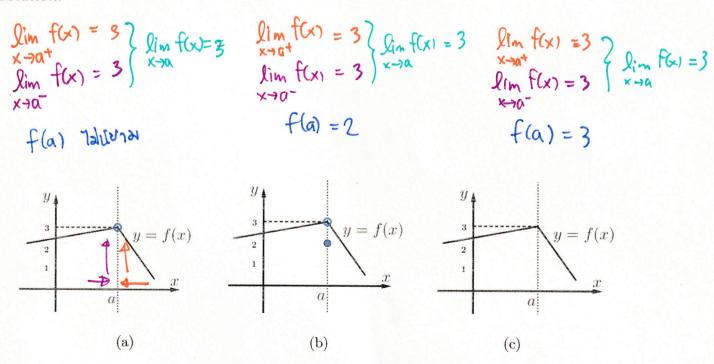


Figure 1.4: A picture for Exercise 1.5

206111: Calculus 1 Academic year 2019

1.1. Som		Infinite Limits and other: and was wishout 130 at X \rightarrow 1122 to 122 for the values of the function increase or decrease without bound.							
x	-10	-1	-0.1	-0.01	-0.001	-0.0001		0	-00
$\frac{1}{x}$	-0.1	-1	-10	-100	-1000	-10,000			

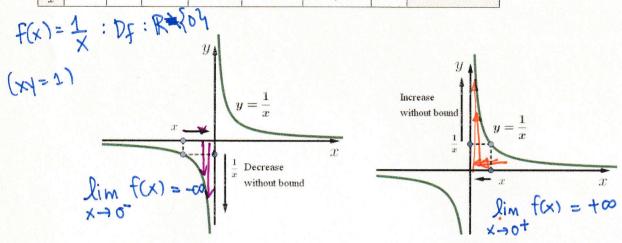


Figure 1.5: (Left) $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ (Right) $\lim_{x\to 0^+} \frac{1}{x} = \infty$

x	0		0.0001	0.001	0.01	0.1	1	10
$\frac{1}{x}$		•••	10,000	1000	100	10	1	0.1

The above discussion represents the limit of 1/x as $x \to 0^-$ and $x \to 0^+$ graphically. These can be summarized that

$$\lim_{x \to 0^-} \frac{1}{x} = \dots \longrightarrow \text{and} \qquad \lim_{x \to 0^+} \frac{1}{x} = \dots \longrightarrow$$

Let us next consider the limit of 1/(x-a) as $x \to a^-$ and $x \to a^+$.

Example 1.6 Fill in the blank and guess what are $\lim_{x\to a^-} \frac{1}{x-a}$ and $\lim_{x\to a^+} \frac{1}{x-a}$

x	a-1	a - 0.1	a - 0.01	a - 0.001	a - 0.0001	 a
$\frac{1}{x-a}$	-1	-10	-100	-1000	-10,000	

x	a	 a + 0.0001	a + 0.001	a + 0.01	a + 0.1	a+1
$\frac{1}{x-a}$		 10,000	1000	100	10	1