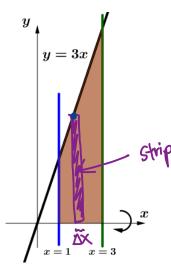


Because the cross sections are disk shaped, the application of this formula is called the *method* of disks.

* गरिश्या में में के के किया में में

Example 8.6 Find the volume of the solid that is obtained when the region under the curve y = 3xover the interval [1, 3] is revolved about the X-axis.



$$V = \int_{31}^{3} \pi [3x]^{2} dx$$

$$V = \pi [9x^{2}dx]$$

$$= \pi [$$

Challenge problem : eliguniane eligar
elignos romano
$$V = \frac{4\pi r^3}{3}$$

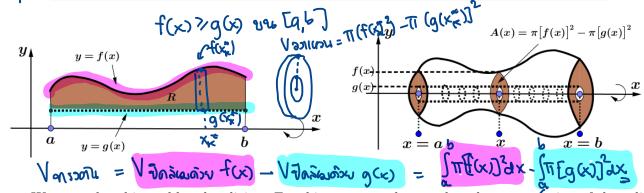
พรางคราย 2 รอบโทน X ละไข อมราบรายา

206111: Calculus 1 Academic year 2019

Volume by Washers Perpendicular to the X-axis

washer

Problem: Let f and g be continuous and nonnegative on [a, b], and suppose that $f(x) \ge g(x)$ for all x in the interval [a, b]. Let R be the region that is bounded above by y = f(x), below by y = g(x), and on the sides by the lines x = a and x = b. Find the volume of the solid of revolution that is generated by revolving the region R about the X-axis.



We can solve this problem by slicing. For this purpose, observe that the cross section of the solid taken perpendicular to the X-axis at the point x is the annular or "washer-shaped", region with inner radius g(x) and outer radius f(x). The area of this region is

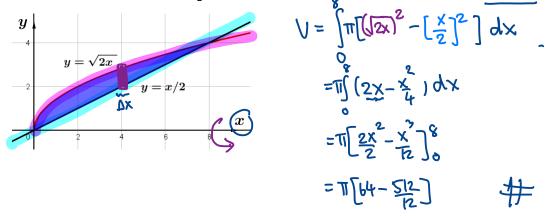
$$A(x) = \pi [f(x)]^2 - \pi [g(x)]^2 = \pi ([f(x)]^2 - [g(x)]^2)$$

Thus, from (8.3) the volume of the solid is

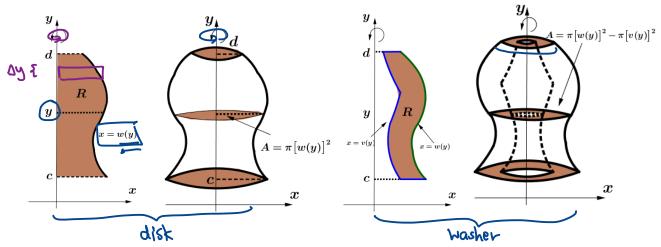
$$V = \int_{a}^{b} \pi \left([f(x)]^{2} - [g(x)]^{2} \right) dx \tag{8.6}$$

Because the cross sections are washer shaped, the application of this formula is called the method of washers.

Example 8.7 Find the volume of the solid that is obtained when the region between the graphs of the equations $y = \sqrt{2x}$ and $y = \frac{x}{2}$ over the interval [0,8] is revolved about the X-axis.



Volume by Disks and Washers perpendicular to the Y-axis

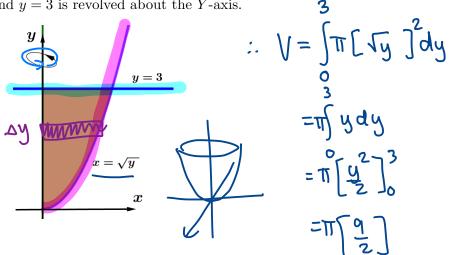


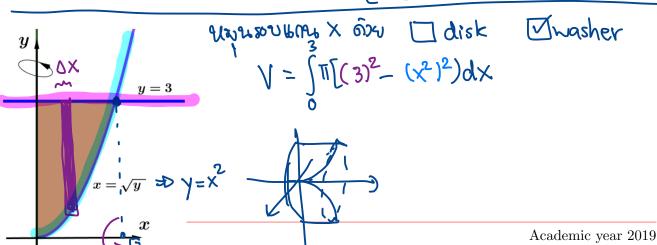
The methods of disks and washers have analogs for regions that are revolved about the Y-axis. Using the method of slicing and Formula (8.4), the following formulas for the volumes of the solid are

$$V = \int_{c}^{d} \pi[w(y)]^{2} dy \qquad (disks), \tag{8.7}$$

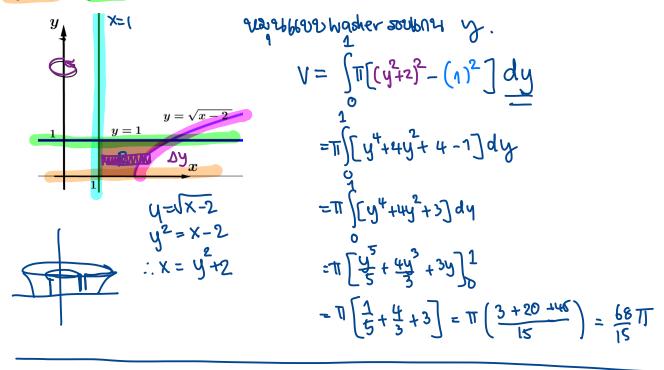
$$V = \int_{c}^{d} \pi \left([w(y)]^{2} - [v(y)]^{2} \right) dy \qquad (washers).$$
 (8.8)

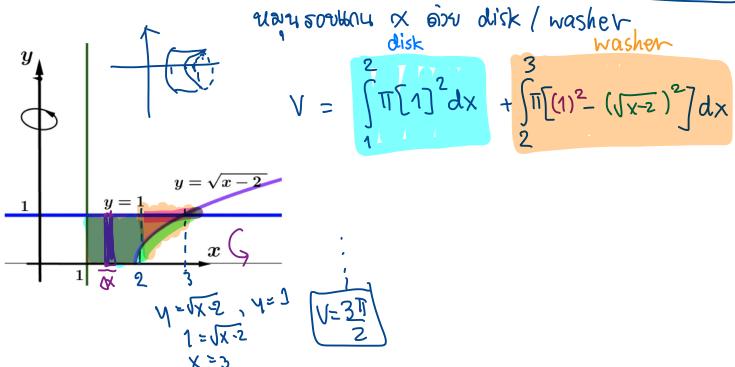
Example 8.8 Find the volume of the solid generated when the region enclosed by $x = \sqrt{y}$, x = 0, and y = 3 is revolved about the Y-axis.





Example 8.9 Find the volume of the solid generated when the region enclosed by x = 1, $y = \sqrt{x - 2}$, y = 0, and y = 1 is revolved about the Y-axis.



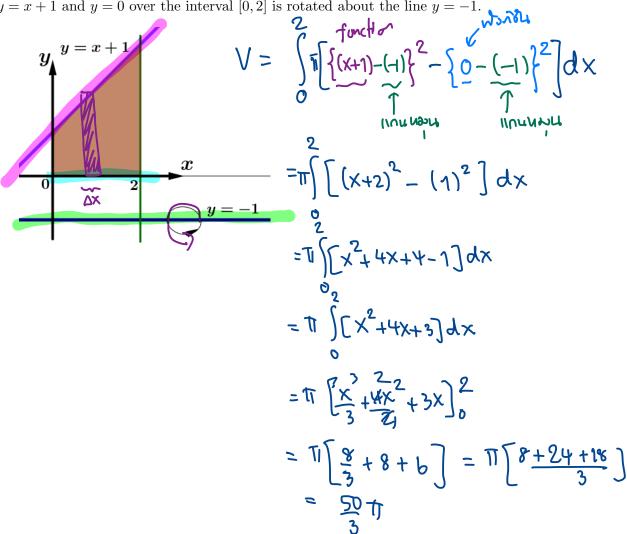


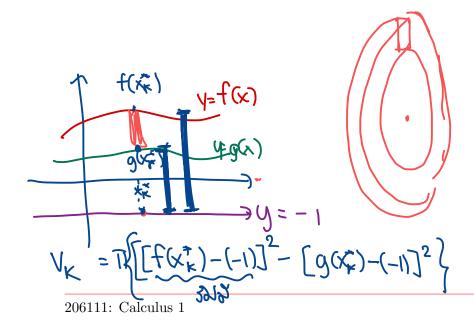
It is possible to use the method of disks and the method of washers to find the volume of a solid of revolution whose axis of revolution is a line other than one of the coordinate axes. Instead of developing a new formula for each situation, we will appeal to Formulas (8.3) and (8.4) and integrate an appropriate cross-sectional area to find the volume.

Other axes of revolution

Academic year 2019 206111: Calculus 1

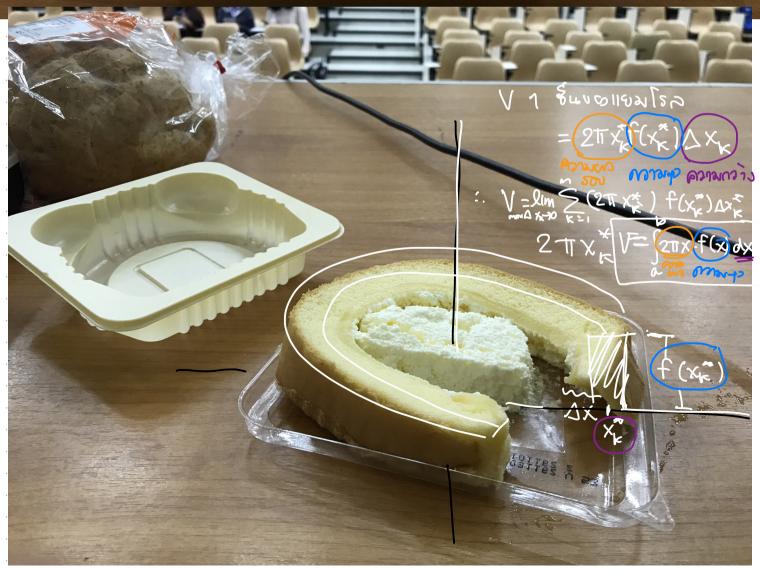
Example 8.10 Find the volume of the solid that is obtained when the region between the curve y = x + 1 and y = 0 over the interval [0, 2] is rotated about the line y = -1.





Academic year 2019

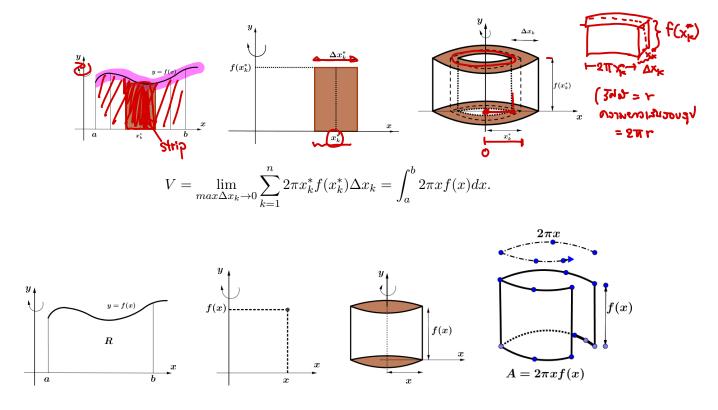
all Assuments of 2



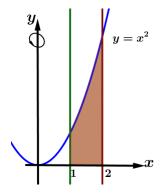
Volumes by Cylindrical Shells 8.3

Theorem 8.5 (Volume by cylindrical shells about the Y-axis) Let f be continuous and nonnegative on [a, b] and let R be the region that is bounded above by y = f(x), below by the X-axis, and on the sides by the lines x = a and x = b. Then the volume V of the solid of revolution that is generated by revolving the region R about the Y-axis is given by

$$V = \int_{a}^{b} 2\pi x f(x) dx. \tag{8.9}$$



Example 8.11 Use cylindrical shells to find the volume of the solid generated when the region enclosed between $y = x^2$, x = 1, x = 2 and the X-axis is revolved about the Y-axis.



Academic year 2019 206111: Calculus 1