9 cmo 92	(1) OIES BOUNSIN LA SONO (1)	
	@ azms separable equation	
	h(y)dy = g(x)	
	hly)dy = g(x)dx = differential form	
	$\int h(y)dy = \int g(x)dx$,
	· · · · · · · · · · · · · · · · · · ·	
Linear E	quation dy poxy = q(x) ava. avidy vu 1 inhili	
	original eg- linear Form P(x) q(x)	
D dy	original eq Linear Form P(x) q(x) +x²y = ex dy + x²y = ex x² ex	-
	$-3e^{x}y = e^{x}$,
	$\frac{dy}{dx} = 1$ $\frac{dy}{dx} + 0y = \frac{1}{x}$,
	Ly dy = 1/x	
	$(4+2u = 4x^{2})$ $u'+2u = 4x$ 2 $4x$	
	$\frac{dy}{dx} + y - \frac{1}{1 + ex} = 0$ $\frac{dy}{dx} + y = \frac{1}{1 + ex}$ $\frac{1}{1 + ex}$,
. <u></u>		
พุฆษย	$\frac{dx}{du} + b(x)\lambda = d(x) \qquad -(x)$	•
Williams	meneral at the man (x) (mas) at at separable 70° (x) (x) (x) (x) (x) of (I (x) (y) — (x)	,
	To a series of the series of t	,
	I(x) dy (I(x) p(x) y = I(x)q(x) - (xx)	
₩.	$\frac{dx}{dx}[I(x)y] = I(x)\frac{dy}{dx} + y\frac{dI(x)}{dx} - (yy)$	•
	(DOW WASSO (**) DO (AA)	,
Mustre .	$\frac{1}{(x)}\frac{dx}{dx} = \frac{dx}{dx}$ $\frac{dx}{dx} = \frac{dx}{dx}$ $\frac{dx}{dx} = \frac{dx}{dx}$	
	$\frac{d\mathbb{T}(x)}{dx} = \frac{1}{p(x)} \frac{dx}{dx}$ $\frac{d\mathbb{T}(x)}{dx} = \frac{1}{p(x)} \frac{dx}{dx}$ $\frac{d\mathbb{T}(x)}{dx} = \frac{1}{p(x)} \frac{dx}{dx}$	
	$\frac{1}{T(x)}d^{2}L(x) = p(x)dx - 1$	•
	orivir noumous min (Integrating)	ļ

9.4 Linear Equations

A first-order differential equation is called linear if it is expressible in the form

$$\frac{dy}{dx} + p(x) \cdot y = q(x). \tag{9.7}$$

Some examples of first-order linear differential equations are

$$\frac{dy}{dx} = x^3 - xy,$$

$$\frac{dy}{dx} + x^2y = e^x,$$

$$\frac{dy}{dx} + (\sin x)y + x^3 = 0,$$

$$\frac{dy}{dx} + 5y + 2 = 0.$$

We will assume that the functions p(x) and q(x) in (9.7) are continuous and we will look for a general solution that is valid on that interval. One method for doing this is based on the observation that if we define the function I = I(x) by

$$I = e^{\int p(x)dx}. (9.8)$$

then

$$\frac{dI}{dx} = e^{\int p(x)dx} \cdot \frac{d}{dx} \int p(x)dx = I \cdot p(x).$$

Thus,

$$\frac{d}{dx}(Iy) = I\frac{dy}{dx} + \frac{dI}{dx}y = I\frac{dy}{dx} + Ip(x)y. \tag{9.9}$$

If (9.7) is multiplied through by I, it becomes

$$I\frac{dy}{dx} + Ip(x) \cdot y = Iq(x).$$

Combine this with (9.9), we have

$$\frac{d}{dx}(Iy) = Iq(x).$$

This equation can be solved for y by integrating both sides with respect to x and then dividing through by I to obtain

$$y = \frac{1}{I(x)} \int I(x)q(x)dx$$

which is a general solution of (9.7) on the interval. The function I(x) in (9.8) is called **an integrating** factor for (9.7), and this method for finding a general solution of (9.7) is called the method of integrating factors.

The Method of Integrating Factors

Step 1 Calculate the integrating factor

$$I = e^{\int p(x)dx}.$$

Step 2 Multiply both sides of (9.7) by I and express the result as

$$\frac{d}{dx}(Iy) = Iq(x)$$

Step 3 Integrate both sides of the equation obtained in Step 2 and then solve for y. Be sure to include a constant of integration in this step.

Imple 9.13 Find the general solution of
$$\frac{dy}{dx} + p(x)y = q(x)$$

$$\frac{dy}{dx} - y = e^{2x} \qquad q(x) = e^{7x}$$

$$(1) \text{ If } I(x) = e^{\int f(x) dx} = e^{\int f(x) dx} = e^{-x}$$

$$(2) \text{ Ion } I(x) f(x) = I(x) e^{2x}$$

$$\frac{d}{dx} I(x) = e^{-x} e^{x}$$

$$\frac{d}{dx} I(x) = e^{-x} e^{x}$$

$$\frac{d}{dx} I(x) = e^{-x} e^{x}$$

$$\frac{d}{dx} I(x) = e^{x} e^{x}$$

$$\frac{d}$$

206111: Calculus 1 Academic year 2019

$$\frac{dy}{dx} + \rho(x)y = q(x)$$

Example 9.14 Solve the initial value problem

Example 9.14 Solve the initial value problem

$$\begin{aligned}
y(x) &= -\frac{1}{x}, q(x) = 1 \\
x\frac{dy}{dx} - y &= x, y(1) = 2. \iff \frac{dy}{dx} - \frac{1}{x}y &= 1 \\
&= \frac{1}{x}, x > 0
\end{aligned}$$
(1) $I(x) = e^{\int -\frac{1}{x} dx} = e^{\int -\frac{1}{$

$$\frac{1}{x} \left[\frac{dy}{dx} - \frac{1}{x} Y \right] = \frac{1}{x} \cdot 1$$

$$\frac{d}{dx} \left[\frac{1}{x} Y \right] = \frac{1}{x}$$

$$d(\frac{1}{x} Y) = \frac{1}{x} dx$$

$$d(\frac{1}{x} Y) = \frac{1}{x} dx$$

$$d(\frac{1}{x} Y) = \int \frac{1}{x} dx$$

$$d(\frac{1}{x} Y) = \int \frac{1}{x} dx$$

$$d(\frac{1}{x} Y) = \int \frac{1}{x} dx$$

$$d(\frac{1}{x} Y) = \frac{1}{x} dx$$

Example 9.15 Find the general solution

$$\frac{dy}{dx} = xe^{x} - 1 - (x)$$

$$\frac{dy}{dx} = xe^{x} + y - 1$$

$$T(x) = e^{\int p(x)dx} = e^{\int -1dx} = e^{-x}$$

$$e^{-x} \left[\frac{dy}{dx} - y \right] = e^{x} \left[xe^{x} - 1 \right]$$

$$\frac{dy}{dx} = xe^{x} + y - 1$$

$$y = \frac{x^{2}}{2} + e^{-x} + C$$

$$y = \frac{x^{2}}{2} + 1 + Ce^{x} + C$$

$$\frac{d}{dx} = xe^{x} + 1 + Ce^{x}$$

(2)
$$e^{-x} \left[\frac{dy}{dx} - y \right] = e^{x} \left[xe^{x} - 1 \right]$$

$$\frac{d}{dx} \left[e^{-x} y \right] = x - e^{-x}$$

$$d \left[e^{-x} y \right] = \left(x - e^{-x} \right) dx$$

$$\int d \left(e^{-x} y \right) = \int \left(x - e^{-x} \right) dx$$

Example 9.16 Solve the initial value problem

$$|\nabla x| = 2x ; q(x) = \frac{x-1}{e^{2x}} - 2xy, \quad y(0) = 1.$$

$$|\nabla x| = \frac{x-1}{e^{2x}} - 4x$$

$$|\nabla x| = \frac{x-1}{e^{2x}} - 4x$$

$$|\nabla x| = e^{x^2} + e^{x^2} - 4x$$

$$|\nabla x| = e^{x^2} + e^{x^2} - 4x$$

$$|\nabla x| = e^{x^2} + e^{x^2} - 2x + e^{x^2} +$$

Example 9.17 Find the general solution of

$$\frac{dy}{dx} = \frac{\cos x}{x} - \frac{1}{x}y$$

$$\frac{dy}{dx} = \frac{\cos x}{x} - \frac{1}{x}y$$

$$\frac{dy}{dx} = \frac{\cos x - y}{x}, \quad x > 0.$$
(1) $I(x) = e^{\int \frac{1}{x} dx} = e^{\int \frac$

9.5 Applications of Differential Equations

9.5.1 Exponential Growth Law

In general, if the rate of change of a quantity Q with respect to time is proportional to the amount of Q present and $Q(0) = Q_0$, then, we obtain the following theorem:

Growth + Deray Model

EXPONENTIAL GROWTH LAW If
$$\frac{dQ}{dt} = rQ$$
 and $Q(0) = Q_0$ then $Q = Q_0e^{rt}$ where

- Q_0 is amount of Q at t=0
- r is relative growth rate
- \bullet t is time
- Q is quantity at time t

If r is positive, this becomes **exponential growth**. If r is negative, this becomes an **exponential** decay problem.

The constant r in the exponential growth law is called the relative growth rate. If the relative growth rate is r = 0.02, then the quantity Q is growing at a rate dQ/dt = 0.02Q (that is 2% of the quantity Q per unit of time t). Note the distinction between the relative growth rate r and the rate of growth dQ/dt of the quantity Q. Relative growth rate is 0.02 and the rate of growth is 0.02Q. Once we know that the rate of growth of something is proportional to the amount present, we know that it has exponential growth and we can use the exponential growth formula.

206111: Calculus 1 Academic year 2019

```
Growth & Decay Model
        कैंद्राश्योग रेडियाता Q कर 1221 t स्वरोठतका ((+)
        อัตวากะเปลี่ยนแปลงจอ Q เห้นบณ ปลลา คือ Y
        JOULIMIPER IN SO Q INNOVISED BY ENTERINDED DICH (ALT)
                             \frac{dQ}{dt} \propto Q(t) \iff \frac{dQ}{dt} = \frac{c}{c}Q(t)
               Esame of user t=0 statement Q_0 Q(0)=Q_0
                                                         growth rate/
decay rate
                          de = re
                        1 da = rdt
                        \int 1 da = \int rdt
                                   = tt tC
                        en (Q)
                           Q(t) = ert+c = Cert (:: C = ec)
                           Q_0 = Q(0) = (e^{r(0)} =) C = Q_0
                               QCt) = Qoerf
```

Example 9.18 The world population passed 1 billion in 1804, 2 billion in 1927, 3 billion in 1960, 4 billion in 1974, 5 billion in 1987, and 6 billion in 1999, as illustrated in Figure 9.1. Population growth over certain periods can be approximated by the exponential growth law.

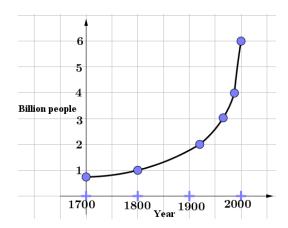


Figure 9.1: World population growth

Example 9.19 Population Growth India had a population of about 1.2 billion in 2010. Let P represent the population (in billions) t years after 2010, and assume a growth rate of 1.5% compounded continuously.

- (A) Find an equation that represents India's population growth after 2010, assuming that the 1.5% growth rate continues.
- (B) What is the estimated population (to the nearest tenth of a billion) of India. in the year 2030?

Growth model:
$$dQ = rQ$$
 ① $r = 1.5 = 0.015$
 $C(1073011273)$ ② $Q(0) = 1.2$ billion

(A) $Q(t) = 0.000$ = 1.2 e^{0.015t}

(B) an $Q(20)$ (and $Q(20)$) = 1.2 e^{0.015t}
 $Q(20) = 1.2$ e^{0.015(20)}
 $Q(20) = 1.2$ e^{0.015(20)}
 $Q(20) = 1.2$ e^{0.015(20)}
 $Q(20) = 1.2$ e^{0.015(20)}
 $Q(20) = 1.2$ e^{0.015(20)}

We now turn to another type of exponential growth: radioactive decay. In 1946, Willard Libby (who later received a Nobel Prize in chemistry) found that as long as a plant or animal is alive, radioactive carbon-14 is maintained at a constant level in its tissues. Once the plant or animal is dead, however, the radioactive carbon-14 diminishes by radioactive decay at a rate proportional to the amount present.

$$\frac{dQ}{dt} = rQ \qquad Q(0) = Q_0$$

This is another example of the exponential growth law. The continuous compound rate of decay for radioactive carbon-14 is 0.0001238, sp r = -0.0001238, since decay implies a negative continuous compound growth rate.

Example 9.20 A human bone fragment was found at an archaeological site in Africa. If 10% of the original amount of radioactive carbon-14 was present, estimate the age of the bone.

$$dQ = rQ ; lin Q(t) \text{ to prevention for Carbon-14 is used to Q(0)=Q0}$$

$$(20) = rQ ; lin Q(t) \text{ to prevent Carbon-14 is used to Q(0)=Q0}$$

$$(20) = rQ ; lin Q(t) \text{ to prevent Carbon-14 is used to Q(t)=0.1Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Carbon-14 is used to Q(t)=0.1Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Carbon-14 is used to Q(t)=0.1Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)=Q0}$$

$$(21) = rQ ; lin Q(t) \text{ to prevent Q(t)$$

Denote by T the half-life of a radioactive element. Use $y = y_0 e^{-kt}$ to write T in terms of the decay constant k. If the half-life of radium-226 is 1600 years, find its decay constant.

$$\frac{d0}{dt} = rQ \quad ; \quad \text{Assissive} \quad Q(1600) = \frac{1}{2}Q_0$$

$$\therefore Q(t) = Q_0 e^{rt} \quad \Longrightarrow \quad \frac{1}{2}Q_0 = Q(1600) = Q_0 e^{1600r}$$

$$\therefore \quad \frac{1}{2} = e^{1600r}$$

$$206111: \text{ Calculus 1}$$

$$-M2 = 1600r \quad \Longrightarrow \quad r = -\frac{M2}{1600} < 0$$

9.6 Comparison of Exponential Growth Phenomena

The graphs and equations given in Figure below compare several widely used growth models. These models are divided into two groups: unlimited growth and limited growth. Following each equation and graph is a short (and necessarily incomplete) list of areas in which the models are used.

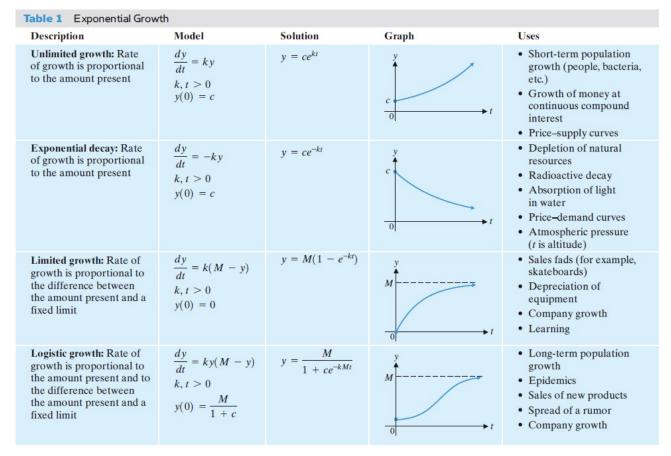


Figure 9.2: Exponential growth

9.6 Comparison of Exponential Growth Phenomena

The graphs and equations given in Figure below compare several widely used growth models. These models are divided into two groups: unlimited growth and limited growth. Following each equation and graph is a short (and necessarily incomplete) list of areas in which the models are used.

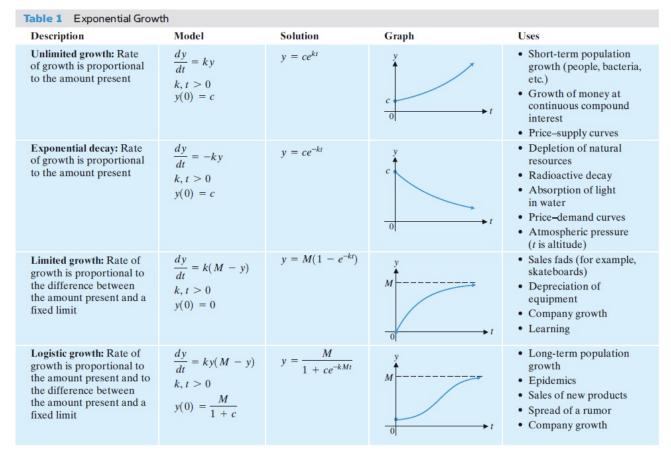
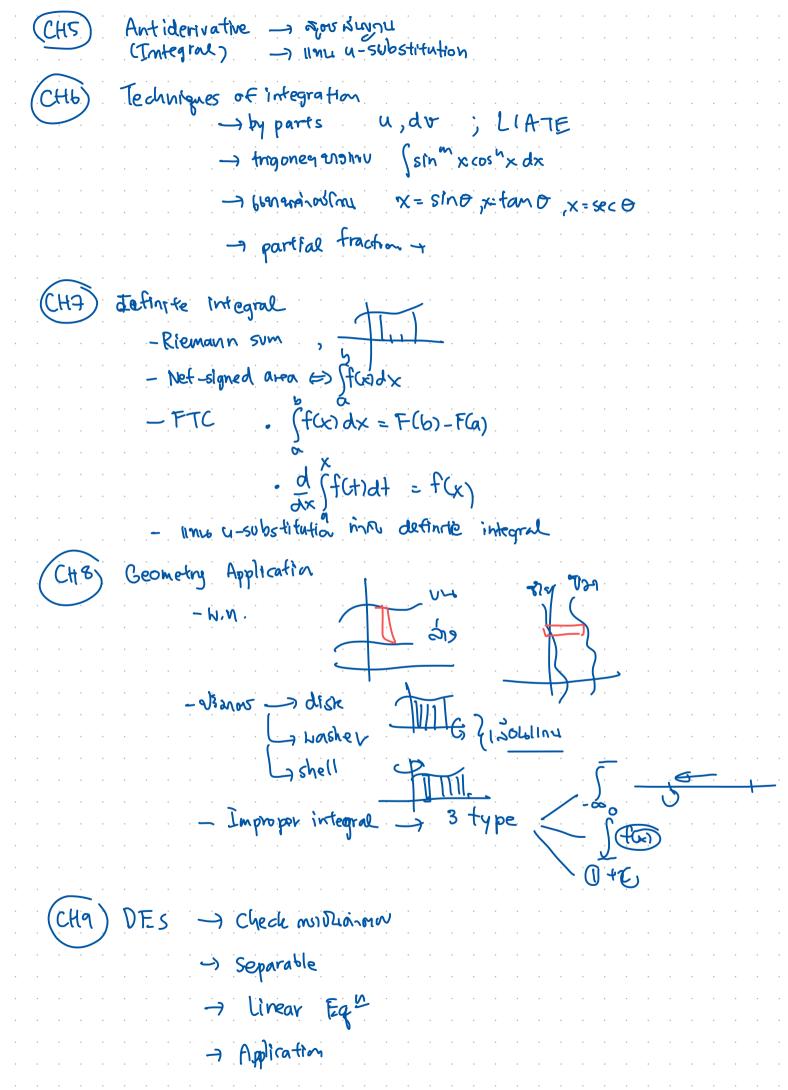



Figure 9.2: Exponential growth

