$$Z = f(x,y) , x = x(t), y = y(t)$$

$$\therefore \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$



$$7 = f(x, y)$$
 , $x = x(u, v)$, $y = y(u, v)$ un $\frac{27}{24}$, $\frac{27}{24}$

8.3 Other versions of the chain rule

Although we will not prove it, the chain rule extends to functions $w = f(v_1, v_2, ..., v_n)$ of n variables. For example, if each v_i is a function of t, i = 1, 2, ..., n, the relevant formula is

$$\frac{dw}{dt} = \frac{\partial w}{\partial v_1} \frac{dv_1}{dt} + \frac{\partial w}{\partial v_2} \frac{dv_2}{dt} + \dots + \frac{\partial w}{\partial v_n} \frac{dv_n}{dt}$$

Example 37 Suppose that $w = x^2 + y^2 - z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$.

Use appropriate forms of the chain rule to find $\frac{\partial w}{\partial \rho}$ and $\frac{\partial w}{\partial \theta}$.

$$\frac{\partial W}{\partial \rho} = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \rho} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \rho} + \frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \rho}$$

$$= (2x) \cdot (\sin \phi \cos \theta) + (2y) \cdot (\sin \phi \sin \theta) + (-2x) \cdot (\cos \phi) \cdot \rho$$

$$\frac{\partial V}{\partial \theta} = \frac{\partial V}{\partial x} \cdot \frac{\partial X}{\partial \theta} + \frac{\partial W}{\partial y} \cdot \frac{\partial Y}{\partial \theta}$$

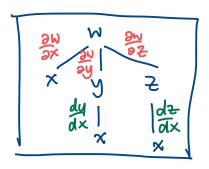
$$= (2x) \cdot (-p \sin \phi \sin \theta) + (2y)(p \sin \phi \cos \theta)$$

Example 38 Suppose that w = xy + yz, $y = \sin x$, $z = e^x$.

Use appropriate forms of the chain rule to find $\frac{dw}{dx}$.

$$\frac{dw}{dx} = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dx} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dx}$$

$$= y + (x+z)\cos x + ye^{x}$$



8.4 Implicit differentiation

Consider the special case where z = f(x, y) is a function of x and y and y is a differentiable function of x. Then

$$\frac{dz}{dx} = \frac{\partial f}{\partial x}\frac{dx}{dx} + \frac{\partial f}{\partial y}\frac{dy}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx}$$
(*)

This result can be used to find derivatives of functions that are defined implicitly. For example, suppose that the equation

$$f(x,y) = c \tag{**}$$

defines y implicitly as a differentiable function of x and we are interested in finding $\frac{dy}{dx}$. Differentiating both sides of (**) with respect to x and applying (*) yields

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} = 0.$$

Thus, if $\frac{\partial f}{\partial y} \neq 0$, we obtain

$$\frac{dy}{dx} = -\frac{\partial f / \partial x}{\partial f / \partial y} = -\frac{f_x}{f_y}.$$

In summary, we have the following result.

Theorem 5 If the equation f(x,y) = c defines y implicitly as a differentiable function of x, and if $\frac{\partial f}{\partial v} \neq 0$,

then

$$\frac{dy}{dx} = -\frac{\partial f / \partial x}{\partial f / \partial y} = -\frac{f_x}{f_y}$$

Example 39 Given that $x^3 + y^2x - 3 = 0$.

find $\frac{dy}{dx}$ using Theorem 5 and check the result using implicit differentiation.

Implicit function $y = x^{2}$ $xy - sn(xy) = x^{2}y^{2} \qquad \text{implicit function}$ $y = y^{2} + y^{2}x - 3 = 0$ $xy - sn(xy) = x^{2}y^{2} + y^{2}x - 3 = 0$ $x - sn(xy) = x^{2}y^{2} + y^{2}x - 3 = 0$

The chain rule also applies to implicit partial differentiation. Consider the case where w = f(x, y, z) is a function of x, y, and z and z is a differentiable function of x and y. It follows from Theorem 5 that

$$\frac{\partial w}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x}.$$
 (***)

If the equation

$$f(x,y,z) = c \tag{****}$$

defines z implicitly as a differentiable function of x and y, then taking the partial derivative of each side of (****) with respect to x and applying (***) gives

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} = 0.$$

If $\frac{\partial f}{\partial z} \neq 0$, then

$$\frac{\partial z}{\partial x} = -\frac{\partial f / \partial x}{\partial f / \partial z} = -\frac{f_x}{f_z}.$$

A similar result holds for $\frac{\partial z}{\partial v}$.

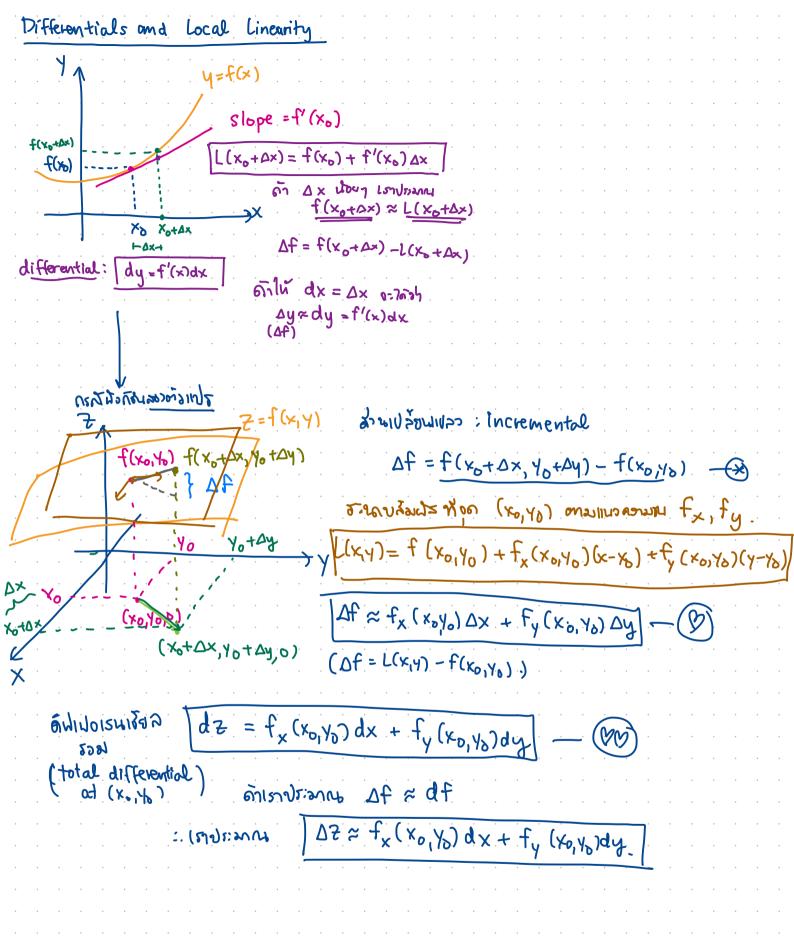
Theorem 6 If the equation f(x, y, z) = c defines z implicitly as a differentiable function of x and y, and

if
$$\frac{\partial f}{\partial z} \neq 0$$
, then

$$\frac{\partial z}{\partial x} = -\frac{\partial f / \partial x}{\partial f / \partial z} = -\frac{f_x}{f_z}$$

$$\frac{\partial z}{\partial x} = -\frac{\partial f / \partial x}{\partial f / \partial z} = -\frac{f_x}{f_z} \quad \text{and} \quad \frac{\partial z}{\partial y} = -\frac{\partial f / \partial y}{\partial f / \partial z} = -\frac{f_y}{f_z} \quad .$$

Example 40 Consider the sphere $x^2 + y^2 + z^2 = 1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$.



9. Differentials and local linearity

9.1 Differentials

As with the one-variable case, the approximations

$$\Delta f \approx f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

for a function of two variables and the approximation

$$\Delta f \approx f_x(x_0, y_0, z_0) \Delta x + f_y(x_0, y_0, z_0) \Delta y + f_z(x_0, y_0, z_0) \Delta z$$

for a function of three variables have a convenient formulation in the language of differentials. If z = f(x, y) is differentiable at a point (x_0, y_0) , we let

$$dz = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$$

denote a new function with dependent variable dz and independent variables dx and dy. We refer to this function (also denoted df) as the **total differential of** z **at** (x_0, y_0) or as the **total differential of** f **at** (x_0, y_0) . Similarly, for a function w = f(x, y, z) of three variables we have the **total differential of** w **at** (x_0, y_0, z_0) ,

$$dw = f_x(x_0, y_0, z_0)dx + f_y(x_0, y_0, z_0)dy + f_z(x_0, y_0, z_0)dz$$

which is also referred to as the **total differential of** f **at** (x_0, y_0, z_0) . It is common practice to omit the subscripts and write as

$$dz = f_x(x, y)dx + f_y(x, y)dy$$

and

$$dw = f_x(x, y, z)dx + f_y(x, y, z)dy + f_z(x, y, z)dz$$

$$\Delta f \approx f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

can be written in the form

$$\Delta f \approx df$$

for $dx = \Delta x$ and $dy = \Delta y$. Equivalently, we can write approximation $\Delta f \approx df$ as

$$\Delta z \approx dz \tag{*}$$

In other words, we can estimate the change Δz in z by the value of the differential dz where dx is the change in x and dy is the change in y. Furthermore, if Δx and Δy are close to 0, then the magnitude of the error in approximation (*) will be much smaller than the distance $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ between (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$.

Example 41 Use (*) to approximate the change in $z = xy^2$ from its value at (0.5, 1.0) to its value at (0.503, 1.004). Compare the magnitude of the error in this approximation with the distance between the Z=f(x,y) - f(0.5,1.0) points (0.5, 1.0) and (0.503, 1.004).

f (0.503, 1.004) $dz = f_x(x_{0,1/0})dx + f_y(x_{0,1/0})dy$

 $f_{x}(x,y) = y^{2}$ $f_{y}(x,y) = 2xy$ $\begin{cases}
dz = (y^{2})dx + (2xy)dy
\end{cases}$

 $\vec{\eta}$ (0.5,1) ; $d7 = (1)^2 dx + 2(0.5)(1) dy = dx + dy$ ล้างขึ้นไปที่จุล (0.503, 1.004) ; $dx = \Delta X = 0.003$, $dy = \Delta y = 0.004$

AZ = 0.003 +0.004 = 0.007

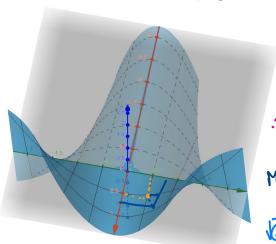
f(0.5,1) f(0,563,1.004)

CONTRAS COUNTY f (0,503,1.004)=0.507 032048-

 $\therefore \Delta f = f(0.503, 1.004) - f(0.5, 1)$ = 0.50703... - 0.5 = 0.00703

Magnitude of error:

| dz-Δ2 | = 10,007-0.00703 | ≈



9.2 Local linear approximations

We now show that if a function f is differentiable at a point, then it can be very closely approximated by a linear function near that point. For example, suppose that f(x,y) is differentiable at the point (x_0,y_0) . Then approximation can be written in the form

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

If we let $\, x = x_0 + \Delta x \, {\rm and} \, \, \, y = y_0 + \Delta y \, , \, \, {\rm this \, \, approximation \, \, becomes} \,$

$$f(x,y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
 (**)

which yields a linear approximation of f(x,y). Since the error in this approximation is equal to the error in approximation, we conclude that for (x,y) close to (x_0,y_0) , the error in (**) will be much smaller than the distance between these two points. When f(x,y) is differentiable at (x_0,y_0) we get

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

and refer to L(x,y) as the local linear approximation to f at (x_0,y_0) .

Example 42 Let L(x,y) denote the local linear approximation to $f(x,y) = \sqrt{x^2 + y^2}$ at the point (3, 4). Compare the error in approximating

$$f(3.04, 3.98) = \sqrt{(3.04)^2 + (3.98)^2}$$

by L(3.04,3.98) with the distance between the points (3, 4) and (3.04, 3.98).